Indian Journal of Medical Microbiology IAMM  | About us |  Subscription |  e-Alerts  | Feedback |  Login   
  Print this page Email this page   Small font sizeDefault font sizeIncrease font size
 Home | Ahead of Print | Current Issue | Archives | Search | Instructions  
Users Online: 932 Official Publication of Indian Association of Medical Microbiologists 
 ~   Next article
 ~   Previous article
 ~   Table of Contents

 ~   Similar in PUBMED
 ~  Search Pubmed for
 ~  Search in Google Scholar for
 ~Related articles
 ~   Citation Manager
 ~   Access Statistics
 ~   Reader Comments
 ~   Email Alert *
 ~   Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed124    
    Printed2    
    Emailed0    
    PDF Downloaded26    
    Comments [Add]    

Recommend this journal

 

 ORIGINAL ARTICLE
Year : 2017  |  Volume : 35  |  Issue : 1  |  Page : 48-52

Biofilm formation capability of enterococcal strains causing urinary tract infection vis-a-vis colonisation and correlation with enterococcal surface protein gene


1 Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India
2 Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India

Correspondence Address:
Neelam Taneja
Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh - 160 012
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijmm.IJMM_16_102

Rights and Permissions

Background: Data regarding differences in biofilm formation among urinary isolates of enterococci causing nosocomial infection versus asymptomatic colonisation is lacking. Conflicting data are available for the role of enterococcal surface protein (esp) gene in the development of enterococcal biofilms. Materials and Methods: A total of 50 (25 each of asymptomatic bacteriuria and urinary tract infection (UTI) isolates were collected from admitted patients who had nosocomial acquisition of enterococci in urine culture (≥105 cfu/ml). Biofilm assay was done by the quantitative adherence assay. Screening for esp gene was carried out by polymerase chain reaction, and confocal laser scanning microscopy was used to examine biofilms. Results: Out of 25 enterococcal isolates from asymptomatic patients, 9 (36%) isolates were found to be biofilm producers (6 weak [optical densities [OD]595 < 0.2] and three medium [OD595≥0.2 to<0.5]). Twelve (48%) out of 25 enterococcal isolates from UTI cases, produced biofilms (7 weak, 4 medium, and 1 strong [OD595>0.5]). The esp gene was present in 30 (12 biofilm+, 18 biofilm−) isolates. Seventeen esp positive isolates were from asymptomatic cases whereas 13 were from UTI. However, we found that 100% of medium and strong biofilm producers were esp positive (P < 0.001). On comparing Enterococcus faecalis (n = 10) and E. faecium (n = 40) isolates, 70% of E. faecalis isolates were biofilm producers as compared to only 35% of E. faecium isolates (P > 0.05). The esp positivity was observed more in E. faecium isolates (65%) as compared to 40% in E. faecalis. Vancomycin-sensitive enterococcal and vancomycin-resistant enterococcal isolates and catheter-related and unrelated isolates showed similarity in biofilm production and esp positivity. Conclusion: The esp gene is not compulsorily required to produce biofilm but when present may enhance the biofilm formation. We did not find any correlation between biofilm formation and the ability of the strain to cause symptomatic UTI be associated with catheters or vancomycin resistance.






[FULL TEXT] [PDF]*


        
Print this article     Email this article

2004 - Indian Journal of Medical Microbiology
Published by Wolters Kluwer - Medknow

Online since April 2001, new site since 1st August '04