Indian Journal of Medical Microbiology IAMM  | About us |  Subscription |  e-Alerts  | Feedback |  Login   
  Print this page Email this page   Small font sizeDefault font sizeIncrease font size
 Home | Ahead of Print | Current Issue | Archives | Search | Instructions  
Users Online: 62 Official Publication of Indian Association of Medical Microbiologists 
 ~   Next article
 ~   Previous article
 ~   Table of Contents

 ~   Similar in PUBMED
 ~  Search Pubmed for
 ~  Search in Google Scholar for
 ~Related articles
 ~   Citation Manager
 ~   Access Statistics
 ~   Reader Comments
 ~   Email Alert *
 ~   Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed615    
    Printed16    
    Emailed0    
    PDF Downloaded110    
    Comments [Add]    

Recommend this journal

 

 ORIGINAL ARTICLE
Year : 2016  |  Volume : 34  |  Issue : 4  |  Page : 433-441

Molecular characterisation of antimicrobial resistance in Pseudomonas aeruginosa and Acinetobacter baumannii during 2014 and 2015 collected across India


1 Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
2 Department of Microbiology, All Institute of Medical Sciences, New Delhi, India
3 Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
4 Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
5 Division of Epidemiology and Communicable Diseases, n Council for Medical Research, New Delhi, India

Correspondence Address:
B Veeraraghavan
Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0255-0857.195376

Rights and Permissions

Background: Surveillance of antimicrobial resistance (AMR) is of great importance. Pseudomonas aeruginosa and Acinetobacter baumannii are important pathogens and emergence of resistance in these have increased the morbidity and mortality rates. This surveillance study was initiated by the Government of India - Indian Council of Medical Research. The aim of this study is to determine the antimicrobial susceptibility profile and to characterise the enzyme mediated antimicrobial resistance such as extended spectrum beta-lactamases (ESBLs) and carbapenemases among multidrug-resistant (MDR) P. aeruginosa and A. baumannii. Materials and Methods: A multi-centric study was conducted from January 2014 to December 2015 with a total number of 240 MDR P. aeruginosa and 312 MDR A. baumannii isolated from blood, cerebrospinal fluid, respiratory, pus, urine and intra-abdominal infections. Kirby–Bauer disc diffusion was done to determine the antimicrobial susceptibility profile. Further, MDR isolates were characterised by multiplex polymerase chain reaction to determine the resistance genes for ESBLs and carbapenemases. Results: Among the ESBLs, blaVEB (23%), blaTEM (5%) and blaSHV (0.4%) in P. aeruginosa and blaPER (54%), blaTEM (16%) and blaSHV (1%) in A. baumannii were the most prevalent. Likewise, blaVIM (37%), blaNDM (14%), blaGES (8%) and blaIMP (2%) in P. aeruginosa and blaOXA-23like (98%), blaOXA-58like (2%), blaNDM (22%) and blaVIM (3%) in A. baumannii were found to be the most prevalent carbapenemases. blaOXA-51like gene, intrinsic to A. baumannii was present in all the isolates tested. Conclusion: The data shown highlight the wide difference in the molecular mechanisms of AMR profile between P. aeruginosa and A. baumannii. In P. aeruginosa, plasmid-mediated mechanisms are much lesser than the chromosomal mediated mechanisms. In A. baumannii, class D oxacillinases are more common than other mechanisms. Continuous surveillance to monitor the trends in AMR among MDR pathogens is important for implementation of infection control and to guide appropriate empirical antimicrobial therapy.






[FULL TEXT] [PDF]*


        
Print this article     Email this article

2004 - Indian Journal of Medical Microbiology
Published by Wolters Kluwer - Medknow

Online since April 2001, new site since 1st August '04